
Chapter 2
Primitive Data

2

Data types
• type: A category or set of data values.

– Constrains the operations that can be performed on data
– Many languages ask the programmer to specify types

– Examples: integer, real number, string

• Internally, computers store everything as 1s and 0s
104 à 01101000
"hi" à 01101000110101

3

Java's primitive types
• primitive types: 8 simple types for numbers, text, etc.

– Java also has object types, which we'll talk about later

Name Description Examples
– int integers (up to 231 - 1) 42, -3, 0, 926394
– double real numbers (up to 10308) 3.1, -0.25, 9.4e3
– char single text characters 'a', 'X', '?', '\n'
– boolean logical values true, false

• Why does Java distinguish integers vs. real numbers?

4

Expressions
• expression: A value or operation that computes a value.

• Examples: 1 + 4 * 5
(7 + 2) * 6 / 3

42

– The simplest expression is a literal value.
– A complex expression can use operators and parentheses.

5

Arithmetic operators
• operator: Combines multiple values or expressions.

– + addition
– - subtraction (or negation)
– * multiplication
– / division
– % modulus (a.k.a. remainder)

• As a program runs, its expressions are evaluated.
– 1 + 1 evaluates to 2
– System.out.println(3 * 4); prints 12

• How would we print the text 3 * 4 ?

6

Integer division with /
• When we divide integers, the quotient is also an integer.

– 14 / 4 is 3, not 3.5

3 4 52
4) 14 10) 45 27) 1425

12 40 135
2 5 75

54
21

• More examples:
– 32 / 5 is 6
– 84 / 10 is 8
– 156 / 100 is 1

– Dividing by 0 causes an error when your program runs.

7

Integer remainder with %
• The % operator computes the remainder from integer division.

– 14 % 4 is 2
– 218 % 5 is 3

3 43
4) 14 5) 218

12 20
2 18

15
3

• Applications of % operator:
– Obtain last digit of a number: 230857 % 10 is 7
– Obtain last 4 digits: 658236489 % 10000 is 6489
– See whether a number is odd: 7 % 2 is 1, 42 % 2 is 0

What is the result?
45 % 6

2 % 2

8 % 20

11 % 0

8

Precedence
• precedence: Order in which operators are evaluated.

– Generally operators evaluate left-to-right.
1 - 2 - 3 is (1 - 2) - 3 which is -4

– But * / % have a higher level of precedence than + -

1 + 3 * 4 is 13

6 + 8 / 2 * 3
6 + 4 * 3
6 + 12 is 18

– Parentheses can force a certain order of evaluation:
(1 + 3) * 4 is 16

– Spacing does not affect order of evaluation
1+3 * 4-2 is 11

9

Precedence examples
• 1 * 2 + 3 * 5 % 4
• _/

|
2 + 3 * 5 % 4

• _/
|

2 + 15 % 4
• ___/

|
2 + 3

• ________/
|
5

n 1 + 8 % 3 * 2 - 9
n _/

|
1 + 2 * 2 - 9

n ___/
|

1 + 4 - 9
n ______/

|
5 - 9

n _________/
|
-4

10

Precedence questions
• What values result from the following expressions?

– 9 / 5

– 695 % 20

– 7 + 6 * 5

– 7 * 6 + 5

– 248 % 100 / 5

– 6 * 3 - 9 / 4

– (5 - 7) * 4

– 6 + (18 % (17 - 12))

11

Real numbers (type double)
• Examples: 6.022 , -42.0 , 2.143e17

– Placing .0 or . after an integer makes it a double.

• The operators + - * / % () all still work with double.

– / produces an exact answer: 15.0 / 2.0 is 7.5

– Precedence is the same: () before * / % before + -

12

Real number example
• 2.0 * 2.4 + 2.25 * 4.0 / 2.0
• ___/

|
4.8 + 2.25 * 4.0 / 2.0

• ___/
|

4.8 + 9.0 / 2.0
• _____/

|
4.8 + 4.5

• ____________/
|
9.3

13

Mixing types
• When int and double are mixed, the result is a double.

– 4.2 * 3 is 12.6

• The conversion is per-operator, affecting only its operands.
– 7 / 3 * 1.2 + 3 / 2
– _/

|
2 * 1.2 + 3 / 2

– ___/
|

2.4 + 3 / 2
– _/

|
2.4 + 1

– ________/
|

3.4

– 3 / 2 is 1 above, not 1.5.

• 2.0 + 10 / 3 * 2.5 - 6 / 4
• ___/

|
2.0 + 3 * 2.5 - 6 / 4

• _____/
|

2.0 + 7.5 - 6 / 4
• _/

|
2.0 + 7.5 - 1

• _________/
|
9.5 - 1

• ______________/
|
8.5

14

String concatenation
• string concatenation: Using + between a string and another

value to make a longer string.
"hello" + 42 is "hello42"
1 + "abc" + 2 is "1abc2"
"abc" + 1 + 2 is "abc12"
1 + 2 + "abc" is "3abc"
"abc" + 9 * 3 is "abc27"
"1" + 1 is "11"
4 - 1 + "abc" is "3abc"

• Use + to print a string and an expression's value together.
– System.out.println("Grade: " + (95.1 + 71.9) / 2);

• Output: Grade: 83.5

15

Variables

16

Receipt example
What's bad about the following code?

public class Receipt {
public static void main(String[] args) {

// Calculate total owed, assuming 8% tax / 15% tip
System.out.println("Subtotal:");
System.out.println(38 + 40 + 30);
System.out.println("Tax:");
System.out.println((38 + 40 + 30) * .08);
System.out.println("Tip:");
System.out.println((38 + 40 + 30) * .15);
System.out.println("Total:");
System.out.println(38 + 40 + 30 +

(38 + 40 + 30) * .08 +
(38 + 40 + 30) * .15);

}
}

– The subtotal expression (38 + 40 + 30) is repeated
– So many println statements

17

Variables
• variable: A piece of the computer's memory that is given a

name and type, and can store a value.
– Like preset stations on a car stereo, or cell phone speed dial:

– Steps for using a variable:
• Declare it - state its name and type
• Initialize it - store a value into it
• Use it - print it or use it as part of an expression

18

Declaration
• variable declaration: Sets aside memory for storing a value.

– Variables must be declared before they can be used.

• Syntax:
type name;

• The name is an identifier.

– int x;

– double myGPA;

x

myGPA

19

int x; // Declare x to be an
// integer variable;

double radius; // Declare radius to
// be a double variable;

char a; // Declare a to be a
// character variable;

int i,j, k; //if variables are same kind
//they can be declared in the same line

Declaring Variables

20

Assignment
• assignment: Stores a value into a variable.

– The value can be an expression; the variable stores its result.

• Syntax:
name = expression;

– int x;
x = 3;

– double myGPA;
myGPA = 1.0 + 2.25;

x 3

myGPA 3.25

21

int y = 1; // Assign 1 to variable y

double radius = 1.0; // Assign 1.0 to variable radius

int x = 5 * (3 / 2); // Assign the value of the expression to x

x = y + 1; // Assign the addition of y and 1 to x

double area = radius * radius * 3.14159; // Compute area

x = x + 1; //A variable can also be used in both sides of
the = operator.

1 = x; // Wrong

Variable Assignment

22

Using variables
• Once given a value, a variable can be used in expressions:

int x;
x = 3;
System.out.println("x is " + x); // x is 3

System.out.println(5 * x - 1); // 5 * 3 - 1

• You can assign a value more than once:
int x;
x = 3;
System.out.println(x + " here"); // 3 here

x = 4 + 7;
System.out.println("now x is " + x); // now x is 11

x 3x 11

23

Declaration/initialization
• A variable can be declared/initialized in one statement.

• Syntax:
type name = value;

– double myGPA = 3.95;

– int x = (11 % 3) + 12; x 14

myGPA 3.95

24

Declaring and Initializing
in One Step

•int x = 1;

•double d = 1.4;

•int i= 3, j= 5;

25

Assignment and algebra
• Assignment uses = , but it is not an algebraic equation.

= means, "store the value at right in variable at left"

• The right side expression is evaluated first,
and then its result is stored in the variable at left.

• What happens here?

int x = 3;
x = x + 2; // ???

x 3x 5

26

Assignment and types
• A variable can only store a value of its own type.

– int x = 2.5; // ERROR: incompatible types

• An int value can be stored in a double variable.
– The value is converted into the equivalent real number.

– double myGPA = 4;

– double avg = 11 / 2;

• Why does avg store 5.0
and not 5.5 ?

myGPA 4.0

avg 5.0

27

Compiler errors
• A variable can't be used until it is assigned a value.

– int x;

System.out.println(x); // ERROR: x has no value

• You may not declare the same variable twice.
– int x;
int x; // ERROR: x already exists

– int x = 3;
int x = 5; // ERROR: x already exists

• How can this code be fixed?

28

Printing a variable's value
• Use + to print a string and a variable's value on one line.

– double grade = (95.1 + 71.9 + 82.6) / 3.0;
System.out.println("Your grade was " + grade);

int students = 11 + 17 + 4 + 19 + 14;
System.out.println("There are " + students +

" students in the course.");

• Output:

Your grade was 83.2
There are 65 students in the course.

29

Receipt question
Improve the receipt program using variables.

public class Receipt {
public static void main(String[] args) {

// Calculate total owed, assuming 8% tax / 15% tip
System.out.println("Subtotal:");
System.out.println(38 + 40 + 30);

System.out.println("Tax:");
System.out.println((38 + 40 + 30) * .08);

System.out.println("Tip:");
System.out.println((38 + 40 + 30) * .15);

System.out.println("Total:");
System.out.println(38 + 40 + 30 +

(38 + 40 + 30) * .15 +
(38 + 40 + 30) * .08);

}
}

30

Receipt answer
public class Receipt {

public static void main(String[] args) {
// Calculate total owed, assuming 8% tax / 15% tip
int subtotal = 38 + 40 + 30;
double tax = subtotal * .08;
double tip = subtotal * .15;
double total = subtotal + tax + tip;

System.out.println("Subtotal: " + subtotal);
System.out.println("Tax: " + tax);
System.out.println("Tip: " + tip);
System.out.println("Total: " + total);

}
}

31

final datatype CONSTANTNAME = VALUE;

final double PI = 3.14159;
final int SIZE = 3;

•If there is a number that does not require change, assign it to a constant
variable.add keyword final to its declaration.

32

Numerical Data Types

 Name Range Storage Size

byte –27 to 27 – 1 (-128 to 127) 8-bit signed

short –215 to 215 – 1 (-32768 to 32767) 16-bit signed

int –231 to 231 – 1 (-2147483648 to 2147483647) 32-bit signed

long –263 to 263 – 1 64-bit signed
 (i.e., -9223372036854775808 to 9223372036854775807)

 float Negative range: 32-bit IEEE 754
 -3.4028235E+38 to -1.4E-45
 Positive range:
 1.4E-45 to 3.4028235E+38
 double Negative range: 64-bit IEEE 754
 -1.7976931348623157E+308 to -4.9E-324

 Positive range:
 4.9E-324 to 1.7976931348623157E+308

33

Reading Input from the
Console

1. Create a Scanner object
Scanner input = new Scanner(System.in);

2. Use the method nextDouble() to obtain to a double
value. For example,
System.out.print("Enter a double value: ");
Scanner input = new Scanner(System.in);
double d = input.nextDouble();

34

35

Reading Numbers from the
Keyboard

Scanner input = new Scanner(System.in);
int value = input.nextInt();

Method Description

nextByte() reads an integer of the byte type.

nextShort() reads an integer of the short type.

nextInt() reads an integer of the int type.

nextLong() reads an integer of the long type.

nextFloat() reads a number of the float type.

nextDouble() reads a number of the double type.

36

Example:Compute Area
With Console Input

37

Compute Average of 3
Numbers

38

Numeric Operators

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 – 0.1 33.9

* Multiplication 300 * 30 9000

/ Division 1.0 / 2.0 0.5

% Remainder 20 % 3 2

39

Integer Division

+, -, *, /, and %

5 / 2 yields an integer 2.
5.0 / 2 yields a double value 2.5

5 % 2 yields 1 (the remainder of the
division)

40

Remainder Operator
Remainder is very useful in programming. For example, an
even number % 2 is always 0 and an odd number % 2 is
always 1. So you can use this property to determine
whether a number is even or odd. Suppose today is
Saturday and you and your friends are going to meet in
10 days. What day is in 10 days? You can find that day
is Tuesday using the following expression:

 Saturday is the 6th day in a week
 A week has 7 days

After 10 days
The 2nd day in a week is Tuesday

(6 + 10) % 7 is 2

41

Math Methods

42

Exponent Operations
System.out.println(Math.pow(2, 3));
// Displays 8.0
System.out.println(Math.pow(4, 0.5));
// Displays 2.0
System.out.println(Math.pow(2.5, 2));
// Displays 6.25
System.out.println(Math.pow(2.5, -2));
// Displays 0.16

43

Number Literals
A literal is a constant value that appears directly in
the program. For example, 34, 1,000,000, and 5.0
are literals in the following statements:

int i = 34;
long x = 1000000;
double d = 5.0;

44

Integer Literals
An integer literal can be assigned to an integer variable
as long as it can fit into the variable. A compilation
error would occur if the literal were too large for the
variable to hold. For example, the statement byte b =
1000 would cause a compilation error, because 1000
cannot be stored in a variable of the byte type.
An integer literal is assumed to be of the int type,
whose value is between -231 (-2147483648) to 231–1
(2147483647). To denote an integer literal of the long
type, append it with the letter L or l. L is preferred
because l (lowercase L) can easily be confused with 1
(the digit one).

45

Scientific Notation
Floating-point literals can also be specified in
scientific notation, for example, 1.23456e+2, same
as 1.23456e2, is equivalent to 123.456, and
1.23456e-2 is equivalent to 0.0123456. E (or e)
represents an exponent and it can be either in
lowercase or uppercase.

46

Augmented Assignment
Operators

47

Type Conversions

48

Characters

49

Strings

